An improved wilson - method and its computational stability 法及其算法穩定性
New advances in research on some difference schemes in nonlinear computational stability 若干差分格式非線性計算穩定性研究的新進展
Problems on nonlinear computational stability of the difference schemes of evolution equations 發展方程差分格式的非線性計算穩定性問題
The method can improve the computational stability and accelerate the calculation speed to some degree 5 、復雜背景下的目標識別一直是人們關注的問題。
Computational stability of explicit difference schemes of forced dissipative nonlinear evolution equations 強迫耗散非線性發展方程顯式差分格式的計算穩定性
Computational stability of the explicit difference schemes of the forced dissipative nonlinear evolution equations 強迫耗散非線性發展方程顯式差分格式的計算穩定性
In another part , apagoge is used in this paper to tell us that not all the stability conditions deduced by the heuristic method are the necessary computational stability conditions , which should be given attention in their applications 在文章的另一部分,反證法的運用表明了從啟示性方法推導來的穩定性條件并非全都是必要條件,在應用中應引起注意。
The fourth - order explicit upwind - biased compact difference schemes are used in the spatial discretization of the nonlinear convection terms . these difference schemes can be used in all computational region including the boundary neighborhood , and can overcome the difficulty not adapting simultaneously in the boundary neighborhood for general three - dimensional fourth - order central difference schemes , and improve computational stability a nd resolution . the compact difference equations with high accuracy and resolution for solving the incompressible n - s equations and perturbation equations are composed of these compact difference schemes , and provides an effective numerical method for the investigations of the turbulent spots and coherent structures 文中發展了四階時間分裂法用于navier - stokes方程及其擾動方程的時間離散;對分裂得出的關于壓力的poisson方程和關于速度的helmholtz方程,建立三維耦合四階緊致迎風差分格式;這些格式適用于包括鄰近邊界點在內的計算區域,克服了三維各自用四階中心差分格式離散不適用于邊界鄰域的困難,并提高了穩定性和分辨率,用這些格式分別組成了數值求解navier - stokes方程及其擾動方程的高精度、高分辨率的緊致差分方程組,為湍斑及湍流相干結構的研究提供了有效的數值方法。
Important missing aspects are : turbulent flow , numerical discretization techniques specially the relevant and difficult topic of numerical treatment of advection and related numerical methods of solution , variable property fluids , boundary layers , stability , etc . rather , it focuses on more primitive and fundamental issues of numerical treatment of advective equation and proper formulation of initial boundary value ( ib vp ) . numerical problems associated with advective dominated transport include spurious oscillation , numerical dispersion , peak clipping , and grid oriention . however , the key of numerical solution of three - dimensional advective problem is searching for a high - precision interpolating function , which can keep the computational stability and low damping 3 、針對三維純對流方程提出了實用的擬協調單元模式,并與線性插值模式和協調單元模式比較后表明,在物理量大梯度變化的情況下,線性插值模式會產生較大的數值阻尼,導致解的失真;協調單元模式具有極高的計算精度和良好的計算穩定性,還可較好地克服數值阻尼,但由于計及物理量的二階導數項,計算工作量大,邊界條件給定尚存在一定的困難;而擬協調單元模式不僅具有協調單元模式計算精度高的優點,還避免了物理量的二階導數項,可大大地減少計算工作量。